
SQL – Part I
Structured Query Language

Database Design
conceptual, logical, physical

Conceptual → Entities

Logical → Entities, properties

Physical → Entities, properties, types

Sakila
Sample
Database

One

Many

One (and only one)

Zero or one

One or many

Zero or many

Cardinality – how one table relates to another

Entities, properties, PK, FK

Entity
PK

FK

Property
Property
Property
Property
Property

Colleges
PK CollegeID

Name
Students
City

Students
PK

FK

StudentID
Name
BirthDate
Email
CollegeID

Example

Database Platform
Installation

MySQL

Workbench

Customize

https://dbeaver.io/

https://www.jetbrains.com/datagrip/

SQL Statements

SQL division of tasks

DQL, data query language, is used for querying data - includes like SELECT.

DDL, data definition language, is used to create and modify tables, views,
users, other objects in the database. It affects the structure, but not the
contents. There are three common commands: CREATE, ALTER, and DROP.

DCL, data control language, is used for access control.

DML, data manipulation language, is used to act on the data itself. The
commands are INSERT, UPDATE, and DELETE.

Simple database

Colleges

PK CollegeID
Name
Students
City
Region
Country

Students

PK
FK

StudentID
CollegeID
FriendID
FirstName
LastName
BirthDate
Email
Phone
City
Region
Country

Download installation script

http://bit.ly/3tiLF3H

SQL Statements

Clauses

CLAUSE PURPOSE

SELECT Selects which columns to include

FROM The tables from which to retrieve data

WHERE Filters out unwanted data

GROUP BY Groups rows together

HAVING Filters groups

ORDER BY Sorts rows

SELECT
https://dev.mysql.com/doc/

This block
is a career

Keep clauses in syntactical order

Order of
Clauses
Matters

Statements

Several clauses make up a select statement.

You will often use two or three clauses.

Order of clauses matters.

Only the select clause is mandatory.

QUERY
SQL statement

Simple database

Colleges

PK CollegeID
Name
Students
City
Region
Country

Students

PK
FK

StudentID
CollegeID
FriendID
FirstName
LastName
BirthDate
Email
Phone
City
Region
Country

Simple select

SELECT columns
FROM table

Select

SELECT columns
FROM table
WHERE condition
ORDER BY columns

SELECT
Retrieving records

Case sensitive – some times

• SQL Keywords – case insensitive but usually written in caps
• Tables and columns are case sensitive depending on platform/OS
• Example, MySQL case sensitive on Linux, insensitive on Windows

Select basics

SELECT list_of_columns
FROM table[s]
[WHERE search_conditions]

Colleges
PK CollegeID

Name
Students
City
Region
Country

Students
PK

FK

StudentID
FirstName
LastName
BirthDate
Email
City
Region
Country
CollegeID

SELECT *
FROM Colleges
WHERE City=‘Cambridge’

Specify columns

SELECT FirstName, LastName
FROM Students

Renaming columns and naming expressions

-- rename column
SELECT Name AS University
FROM Colleges

-- expression plus rename
SELECT Name AS University, Students*1000 AS ‘number of students’
FROM Colleges

Pretty name for column

SELECT FirstName,
LastName,
CONCAT(FirstName, " ", LastName) AS FullName

FROM students

A select_expr can be given an alias using AS alias_name. The alias is used as the expression's column name
and can be used in GROUP BY, ORDER BY, or HAVING clauses.

Table aliases

SELECT c.Name, c.Students
FROM Colleges c

Active learning: write the query for the
following output

You can use TIMESTAMPDIFF(unit, datetime_expr1, datetime_expr2)

Student age

SELECT FirstName,
LastName,
Birthdate,
TIMESTAMPDIFF(YEAR, Birthdate,now()) AS Age

FROM Students

* TIMESTAMPDIFF(unit, datetime_expr1, datetime_expr2)

Distinct

SELECT DISTINCT Region
FROM Colleges

Arithmetic Operator Precedence

Parenthesis

Multiplication Division

Subtraction Addition

Active learning: change precedence to match
output

Change Precedence

Precedence example

Active learning

Return:
College name
Student population * 1000
Projected growth - 20% increase

Active learning

SELECT
Name,

Students * 1000 AS Population,
Students * 1000 * 1.2 AS ProjectedGrowth

WHERE

The where clause

The where clause specifies the search conditions

SELECT columns_list
FROM table_list
WHERE search_conditions

Where region is equal to

SELECT *
FROM Students
WHERE Region = 'TX'

Search condition categories

• Comparison operators – e.g. =,<,>)
• Logical operators – e.g. AND,OR, NOT
• Ranges – between and not between
• Lists – IN, NOT IN
• Unknown values – IS NULL, IS NOT NULL
• Character matches – LIKE, NOT LIKE

Comparison operators

Name Description
> Greater than operator
>= Greater than or equal operator
< Less than operator
<>, != Not equal operator
<= Less than or equal operator
<=> NULL-safe equal to operator
= Equal operator

WHERE expression comparison_operator expression

Where region is not equal to …

SELECT *
FROM Students
WHERE Region <> 'TX'

* Not case sensitive

Active learning

Find students born after January 1st, 1990

Active learning

SELECT *
FROM Students
WHERE BirthDate > '1990-01-01'

Where birth date is greater than

SELECT *
FROM Students
WHERE BirthDate > '1996-01-01'

* Date format 'YYYY-MM-DD'

Comparison operators
Name Description
BETWEEN ... AND ... Value is within a range
COALESCE() Return the first non-NULL argument
GREATEST() Return the largest argument
IN() Value is within a set of values
INTERVAL() Index of the argument that is less
IS Test a value against a boolean
IS NOT Test a value against a boolean
IS NOT NULL NOT NULL value test
IS NULL NULL value test
ISNULL() Test whether the argument is NULL
LEAST() Return the smallest argument
LIKE Simple pattern matching
NOT BETWEEN ...
AND ...

Value is not within a range of values

NOT IN() Value is not within a set of values
NOT LIKE Negation of simple pattern matching
STRCMP() Compare two strings

Conditions are composed of expressions and
operators
Boolean expressions fetch the data based on

matching a single value

SELECT column
FROM table_name
WHERE single_value_matching_expression

Example:

SELECT * FROM Colleges WHERE Region = 'MA'

Numeric expressions Perform mathematical
operation in a query

SELECT numerical_expression as operation_name
FROM table_name

Example:

SELECT (4 + 3) AS Addition

Date expressions Results in datetime value

Example:

SELECT now()

LOGICAL OPERATORS
AND, NOT, OR

Logical operators

Name Description
AND, && Logical AND
NOT, ! Negates value
OR, || Logical OR
XOR Logical XOR

AND

SELECT *
FROM Students
WHERE

BirthDate > '1990-01-01' AND Region = 'TX'

OR

SELECT *
FROM Students
WHERE

BirthDate > '1990-01-01' OR Region = 'TX'

NOT

SELECT *
FROM Students
WHERE

NOT (BirthDate > '1990-01-01')

Logical Operator Precedence
Parenthesis

Multiplication Division

Subtraction Addition

NOT

AND

OR

Active learning

Find students born after 1950, from Texas, and Austin

Active learning

SELECT *
FROM Students
WHERE

BirthDate > '1950-01-01'
AND
Region = 'TX'
AND
City = 'Austin'

IN
expr IN (value, …)

OR

SELECT *
FROM Students
WHERE

Region = 'AZ' OR
Region = 'TX' OR
Region = 'FL'

IN

SELECT *
FROM Students
WHERE Region IN ('AZ', 'TX', 'FL')

NOT IN

SELECT *
FROM students
WHERE region NOT IN ('Z', 'TX', 'FL')

Active learning

Students from Austin, Boston, and Chicago

Active learning

SELECT *
FROM Students
WHERE

City IN ('Austin', 'Miami', 'Chicago')

BETWEEN
expr BETWEEN min AND max

Where birth date is between … and …

SELECT *
FROM Students
WHERE

StudentID >= 1 AND
StudentID <= 5

Where StudentID is between … and …

SELECT *
FROM Students
WHERE StudentID

BETWEEN 1 AND 5

Active learning

Find students born 01/01/1990 to 01/01/2000

Active learning

SELECT *
FROM Students
WHERE BirthDate

BETWEEN '1990-01-01' AND '2000-01-01'

NULL
WHERE column IS NULL

NULL is a placeholder for unknown
information. It’s not zero or blank

SELECT *
FROM Students
WHERE Country IS NULL

* IS NOT NULL

Arithmetic operations on null are null

SELECT null*1 AS test

Active learning

Find students with a phone

Active learning

SELECT *
FROM Students
WHERE Phone IS NOT NULL

